How to thin $\mathbf{9 6 \%}$ alcohol to $\mathbf{8 0 \%}$
 or...

.. a little mathematic challenge on a rainy day, by Arne Kverneland...
Last year, in 2018 I had several goes at trying to optimise my Origo alcohol stove to reduce soot and smell from it. One advice I received was to thin out the 96% alcohol with water until it held 80%. When I came over some 80% alcohol, I tried it, and sure enough; the flame now contained less yellow in it, so I reckoned it was an improvement. Moreover, time to boil 0.51 water still stayed at 4 min . 30 seconds.
I mostly only get the 96% (denaturised) alcohol, so now I had a go to find out how much water I need to add to end up with 80% concentration.
That was a struggle - I am not a mathematician, but this is how I did:
Let's call the pure alcohol in a unit (for instance; one litre) of (96%) spiritus \mathbf{A}, and the remaining water in it for \mathbf{W}.
The extra water needed to reach 80% concentration, is \mathbf{X}.
Then, 1) $A+W=1$
2) $\quad A=0.96$
3) $\quad W=0.04$

In other words...
4) $\frac{A}{A+W}=0.96$

We then add the X amount of water into 4) to reach 80% (0.80) alcohol concentration.
Then 5) $\quad \frac{A}{A+W+X}=0.80$
Solving this equation gives us..
6) $\quad \boldsymbol{X}=\frac{A-0.80 A-0.80 \mathrm{~W}}{0.80}=\frac{0.96-0.80 \times 0.96-0.80 \times 0.04}{0.80}=\mathbf{0 . 2 0}$

In other words, if we have one litre of alcohol with 96% concentration, just add 2dl of water to it, and the alcohol contents will drop to 80%.

This sounded a bit too simple, so I ran it through formula 5) and added those 0.2 units of water to see:

Then, sure enough, 5)

$$
\frac{A}{A+W+X}=\frac{0.96}{0.96+0.04+0.2}=0.80=80 \% \quad \text { Looks } O K
$$

More practical: What if you have a litre of 92% moonshine and want to thin it down to 40% ? Then $\mathrm{A}=0.92, \mathrm{~W}=0.08$ and the new concentration is 0.40 . Insert the numbers into formula 6):
6) $\quad X=\frac{A-0.40 A-0.40 \mathrm{~W}}{0.40}=\frac{0.92-0.40 \times 0,92-0.40 \times 0.08}{0.40}=1.3[$ litre $]$

Good to know!
(.. I hope I haven't screwed up completely - you'd better check it yourself...)

